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Abstract. A recently proposed set of sum rules, based on the pion–kaon scattering amplitudes and their
crossing symmetric conjugates are analyzed in detail. A key role is played by the l = 0 ππ → KK amplitude
which requires an extrapolation to be performed. It is shown how this is tightly constrained from analyticity,
chiral counting and the available experimental data, and its stability is tested. A re-evaluation of the O(p4)
chiral couplings L1, L2, L3 is obtained, as well as a new evaluation of the large Nc suppressed coupling L4.

1 Introduction

Chiral perturbation theory is a rigorous approach to QCD
in a restricted but nonperturbative regime, which has re-
cently been developed to O(p6), i.e. to the next-to-next-
to-leading order [1]. Foundations of this method [2] and
the abundant work which has followed the basic papers
where the NLO theory was defined [3,4] are summarized
in the review [5]. The chiral expansion is based on an ef-
fective field theory and, as such, involves an increasing
number of coupling constants with increasing chiral or-
der. In SU(3), ten couplings Li(µ) are involved at O(p4)
and ninety more couplings Ci(µ) appear at the next or-
der. In order to make predictions to O(p6) accuracy, es-
timates of the Ci(µ) must be performed but, moreover,
the values of the Li may have to be modified, compared
to their determination using O(p4) accuracy. The order of
magnitude of such a variation, which reflects the rate of
convergence of the expansion in the strange quark mass,
can be estimated by comparing several different O(p4) de-
terminations of the same coupling constants. This is one
purpose of the present work, in which we propose a new
determination of L1, L2 and L3 from a set of sum rules
based on the pion–kaon amplitude and its expression in
ChPT at one loop [6]. We will compare these results with
the previous determination from the Kl4 form factors [7,
8] and the (partial) determination from ππ sum rules [3].

A few O(p4) coupling constants are still very poorly
known, in particular those which are suppressed in the
large Nc limit: L4 and L6. Naively, one may even question
whether such a suppression should actually hold, because
these couplings were shown to be controlled by physics of
the scalar meson resonances [9] which fail to obey simple
large Nc rules. On a more sophisticated level, one may
note that some of the large Nc suppressed mechanisms,
like internal quark loops, are partly taken into account

in the chiral expansion via meson loops. The question re-
mains of what value of the scale µ is the one at which
the suppression operates. Another related interesting is-
sue is that of the phase structure of QCD-like theories as
a function of the number NF of massless flavors and the
value of N crit

F above which chiral symmetry is no longer
spontaneously broken. Some recent lattice simulations [10]
have obtained values as small as N crit

F � 4. If true, this
should affect the SU(3) chiral expansion. For instance, it
can be seen that L4 and L6 control how the chiral order
parameters Fπ and 〈ūu〉 respectively evolve from NF = 2
to NF = 3 [4]. Clearly, a small value of N crit

F , should lead
to anomalously large values of L4, L6.

In view of this, an interesting outcome of the present
work is a determination of L4. In principle, it could have
been extracted from the Kl4 form factors, but this is not
feasible in practice because its contribution is accidentally
suppressed [7,8]. Here, we will take advantage of the fact
that no such suppression affects the πK amplitude and we
will show that an evaluation of L4 is then possible, which
is at the same level of reliability and accuracy as that of
L1, L2, L3. Several recent papers have considered aspects
of the pion–kaon scattering amplitudes [11–13]. One pur-
pose is a better understanding of the scalar resonances
(see e.g. [14] for a recent discussion of the experimental
situation). This question, of course, is not unrelated to
that of the size of the chiral couplings [9].

The dispersive formalism on which the sum rules are
based has been developed in a previous paper [15]. This
formalism is reviewed in Sect. 2 below and presented in a
form suitable for comparison with the O(p4) expression of
the amplitude, which has been computed some time ago
by Bernard et al. [6], as well as the O(p6) expression which
should be available in the near future. The detailed form
of the sum rules for the O(p4) coupling constants are then
presented in Sect. 3. The practical evaluation of these sum
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rules, making use of the available experimental data then
presents a difficulty: because of s–t crossing the ππ → KK
amplitude appears and it is needed below the experimen-
tally accessible energy range. This was noted in [15] in
which only results not depending on this amplitude were
presented. Extrapolation of the ππ → KK amplitude, in
particular for the S-wave, is a problem which was consid-
ered a long time ago [16,17]. We discuss this question in
some detail in Sect. 4, and then present all the results.

2 Dispersive representation,
crossing symmetry and chiral counting

Basic work on dispersion relations related to the pion–
kaon amplitudes has been reviewed by Lang [18]. In order
to determine the number of subtractions we make the as-
sumption that standard Regge phenomenology applies. As
shown in [15] the dispersive representation can be recast
in a specific form by taking into account chiral counting.
Dropping terms which are of chiral order O(p8) it can be
put in a form which involves functions of only one of the
Mandelstam variables s, t, u and are analytic, except for a
right-hand cut, plus a polynomial. This was first demon-
strated for the case of the pion–pion amplitude in [19]. Let
us begin by recalling some basic facts and some notation.

2.1 Notation and conventions

Making use of s–u crossing, the two independent isospin
I = 1/2 and I = 3/2 pion–kaon amplitudes can be ex-
pressed in terms of the I = 3/2 one,

F 1/2(s, t, u) = −1
2
F 3/2(s, t, u) +

3
2
F 3/2(u, t, s). (1)

It is convenient to introduce the amplitudes F+ and F−
which are respectively even and odd under s–u crossing
because they require a different number of subtractions.
In terms of isospin amplitudes, they are defined by

F+(s, t, u) =
1
3
F 1/2(s, t, u) +

2
3
F 3/2(s, t, u),

F−(s, t, u) =
1
3
F 1/2(s, t, u) − 1

3
F 3/2(s, t, u). (2)

Under s–t crossing, one generates the I = 0 and I = 1
ππ → KK amplitudes,

G0(t, s, u) =
√

6F+(s, t, u),
G1(t, s, u) = 2F−(s, t, u). (3)

The partial wave expansions of the πK isospin amplitudes
are defined by

F I(s, t) = 16π
∑

l

(2l + 1)Pl(zs)f I
l (s). (4)

In a similar way we can expand F+ and F−, the corre-
sponding partial wave projections are denoted f+

l (s) and

f−
l (s). The s-channel scattering angle appearing above is

given by

zs =
s(t− u) +m2

−m
2
+

(s−m2−)(s−m2
+)
, with m± = mK ±mπ. (5)

The partial wave expansion of the ππ → KK amplitude
is conventionally defined by

GI(t, s) = 16π
√

2
∑

l

(2l+1)Pl(zt)gI
l (t)(qπ(t)qK(t))l. (6)

with

qP (t) =
1
2

√
t− 4m2

P , zt =
s− u

4qπ(t)qK(t)
. (7)

The rationale for introducing the factor (qπqK)l in (6) is
explained by Frazer and Fulco [20]. It ensures that the
partial wave amplitudes gI

l (t) have good analytic proper-
ties. With these definitions, the partial wave S-matrices
are given by

πK → πK : SI
l (s) = 1 + 2i

√
(s−m2−)(s−m2

+)

s
f I

l (s),

ππ → KK : SI
l (t) = 4i

(qπ(t)qK(t))l+1/2
√
t

gI
l (t). (8)

2.2 Dispersive representation of F +(s, t)

One first writes down a dispersive representation with t
fixed (and small). According to Regge phenomenology, the
asymptotic dependence as a function of s is controlled
by the pomeron, implying the need for two subtractions,
which would also result on the general basis of the Frois-
sart bound,

F+(s, t) = c̃(t) +
1
π

∫ ∞

m2
+

ds′

(s′)2

×
(

s2

s′ − s +
u2

s′ − u
)

ImF+(s′, t), (9)

giving F+(s, t) in terms of an unknown function of t. Next,
following [19], one splits the integration range into two re-
gions (a) [m2

+, Λ
2] and (b) [Λ2,∞], Λ being the scale of

the chiral expansion, i.e. Λ � 1 GeV. In the lower integra-
tion range, we can apply the chiral counting and drop the
imaginary parts of the partial waves with l ≥ 2 which are
O(p8), i.e. we put

ImF+(s′, t)

= 16π
[
Imf+

0 + 3Imf+
1 (s′)

s′(t− u′) +∆2
Kπ

(s′ −m2−)(s′ −m2
+)

]
,

s′ < Λ2. (10)

In the region (b) we can expand in terms of s, t, u divided
by Λ2 again dropping terms which are O(p8). After some
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reshuffling of part (a) and absorbing functions of t into
c̃(t), one obtains the fixed t dispersive representation in
the form

F+(s, t) = c(t) +
[
W+

0 (s) + (t− u)W+
1 (s) + (s↔ u)

]
−(2us)

1
π

∫ ∞

Λ2

ds′

(s′)3

(
1 + 3

ΣπK − t/2
s′

)
×ImF+(s′, t) +O(p8). (11)

In the equations above we have introduced the notation

ΣPQ = m2
P +m2

Q, ∆PQ = m2
P −m2

Q. (12)

The functions W+
0 (s), W+

1 (s) are analytic except for a
right-hand cut and are given in terms of the S- and P-
waves of the pion–kaon amplitude,

W+
0 (s) = 16

∫ Λ2

m2
+

ds′

s′ − s

×
(

Imf+
0 (s′) +∆2

Kπ

3Imf+
1 (s′)

(s′ −m2−)(s′ −m2
+)

)
,

W+
1 (s) = 16s

∫ Λ2

m2
+

ds′

s′ − s
3Imf+

1 (s′)
(s′ −m2−)(s′ −m2

+)
. (13)

In order to further constrain the function c(t) appear-
ing in (11) we must write down for F+(s, t) a dispersion
relation involving the cut in the t variable. A possibility
is to use a dispersion relation with s fixed. Alternatively,
one can use one with us fixed, us = b (hyperbolic dis-
persion relation), which was shown to have better conver-
gence properties [21]. In this case, the variables s and u
are functions of t denoted sb and ub,

sb(t) = ΣπK − t

2
+

√(
ΣπK − t

2

)2

− b,

ub(t) = b/sb(t). (14)

The function F+(sb, t) is an analytic function of t with (a)
a right-hand cut 4m2

π ≤ t < ∞, and (b) a left-hand cut
−∞ < t ≤ m2

− − b/m2
+. In the following, we will adopt a

specific value for b:

b ≡ ∆2
Kπ = m2

−m
2
+. (15)

This corresponds to backward scattering, zs = −1. In that
case, the upper limit of the left-hand cut is t = 0. In
the asymptotic regions t → ±∞, it is simple to verify
that the dominant divergence is controlled by the K∗ or
K∗

2 Regge trajectories, and it is therefore plausible that a
single subtraction is sufficient in this case. The following
representation is then obtained [17,15]:

F+(sb, t) =
1
π

∫ ∞

m2
+

ds′

s′

(
sb

s′ − sb +
ub

s′ − ub

)
ImF+(s′, t′b)

+
t√
6π

∫ ∞

4m2
π

dt′ImG0(t′, s′b)
t′(t′ − t) + cb, (16)

where s′b ≡ sb(t′) (see (14)) and

t′b = 2ΣπK − s′ − b

s′
. (17)

Next, one splits the integration range as before and drops
terms which are O(p8). Equating the representations (11)
and (16) then determines the unknown function in the
former expression leaving just one undetermined constant.
Introducing the following notation for the various high-
energy integrals which are involved,

H+(n) =
1
π

∫ ∞

Λ2

ds′

(s′)n
ImF+(s′, 0),

Ḣ+(n) =
1
π

∫ ∞

Λ2

ds′

(s′)n
∂tImF+(s′, 0),

H+
b (n) =

1
π

∫ ∞

Λ2

ds′

(s′)n
ImF+(s′, t′b),

G+
b (n) =

1√
6π

∫ ∞

Λ2

dt′

(t′)n
ImG0(t′, s′b), (18)

we finally obtain the following dispersive representation
for the amplitude F+(s, t):

F+(s, t) = C +
[
W+

0 (s) + (t− u)W+
1 (s) + (s↔ u)

]
+U0(t) + 16t

∫ Λ2

m2
+

ds′
3Imf+

1 (s′)
(s′ −m2−)(s′ −m2

+)

−2us
[
H+(3) + tḢ+(3) + 3(ΣπK − t/2)H+(4)

]
+2bt

[
Ḣ+(3) − 3/2H+(4)

]
+ tG+

b (2) + t2G+
b (3)

+t3G+
b (4) − tH+

b (2) + t(t− 4ΣπK)H+
b (3)

−t(t2 − 6tΣπK + 12Σ2
πK − 3b)H+

b (4) +O(p8). (19)

Apart from a polynomial, this expression involves the func-
tions W+

0 (z), W+
1 (z) which are defined in terms of the S

and P waves of the πK amplitude (see (13) and (23)) and
the function U0(z) which is defined in terms of the S wave
of the ππ → KK amplitude,

U0(z) =
16√

3
z

∫ Λ2

4m2
π

dt′
Img00(t

′)
t′(t′ − z) . (20)

This derivation shows that the specific form of the ampli-
tude (19) must hold in chiral perturbation theory at O(p4)
(which we will check explicitly below) and also at O(p6).

2.3 Dispersive representation of F −(s, t)

We proceed in the same way as for F+(s, t) by first writing
down a dispersion relation with t fixed, the only difference
is that now, the behavior at large s is dominated by the
K∗ and K∗

2 Regge exchanges and, therefore, a dispersion
representation with no subtraction should converge,

F−(s, t) =
1
π

∫ ∞

m2
+

ds′
(

1
s′ − s − 1

s′ − u
)

ImF−(s′, t).

(21)
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As before, one splits the integration range into two pieces
and in the lower-energy range one retains only the S and
P waves, obtaining

F−(s, t) = W−
0 (s) −W−

0 (u) + (t− u)W−
1 (s)

−(t− s)W−
1 (u) + (s− u)

×
[
16
∫ Λ2

m2
+

3Imf−
1 (s′)ds′

(s′ −m2−)(s′ −m2
+)

+
1
π

∫ ∞

Λ2

ImF−(s′, t)ds′

(s′ − s)(s′ − u)
]
. (22)

The functions W−
0 (s) and W−

1 (s) are exactly analogous
to their + counterparts defined above,

W−
0 (s) = 16

∫ Λ2

m2
+

ds′

s′ − s

×
(

Imf−
0 (s′) +∆2

Kπ

3Imf−
1 (s′)

(s′ −m2−)(s′ −m2
+)

)
,

W−
1 (s) = 16s

∫ Λ2

m2
+

ds′

s′ − s
3Imf−

1 (s′)
(s′ −m2−)(s′ −m2

+)
. (23)

This representation has no undefined functions but con-
vergence is ensured only for negative values of t. One can
extend the range of validity in t, and also display the cut
structure by combining with a hyperbolic dispersion rela-
tion. One writes a dispersion relation at fixed us = b for
the function

F−(s, t)/(s− u) (24)

which is even in s− u and thus free of kinematical singu-
larities, and one obtains

F−(sb, t)
sb − ub

=
1
2π

∫ ∞

4m2
π

dt′

t′ − t Im
[
G1(t′, s′b)
s′b − u′

b

]

+
1
π

∫ ∞

m2
+

ds′
ImF−(s′, t′b)

(s′ − sb)(s′ − ub)
. (25)

In the low-energy region of the right-hand cut, only the P
wave of the ππ → KK amplitude will contribute, which
generates the function

U1(z) = 6
√

2
∫ Λ2

4m2
π

dt′
Img11(t

′)
t′ − z . (26)

Equating the fixed t and fixed us representations gives the
following equation, valid for t ≤ 0:

32
∫ Λ2

m2
+

ds′
3Imf−

1 (s′)
(s′ −m2−)(s′ −m2

+)

+
1
π

∫ ∞

Λ2
ds′

ImF−(s′, t)
(s′ − sb)(s′ − ub)

= U1(t) +
1
2π

∫ ∞

Λ2
dt′

ImG1(t′, s′b)
(t′ − t)(s′b − u′

b)

+
1
π

∫ ∞

Λ2
ds′

ImF−(s′, t′b)
(s′ − sb)(s′ − ub)

, (27)

which relates the P -waves in the πK and the ππ → KK
channels. Finally, introducing the following notation for
the high-energy integrals:

H−(n) =
1
π

∫ ∞

Λ2

ds′

(s′)n
ImF−(s′, 0),

H−
b (n) =

1
π

∫ ∞

Λ2

ds′

(s′)n
ImF−(s′, t′b),

G−
b (n) =

1
2π

∫ ∞

Λ2

dt′

(t′)n−1(s′b − u′
b)

ImG1(t′, s′b), (28)

we obtain the dispersive representation for F−(s, t), valid
up to O(p8) contributions, in the form,

F−(s, t) = W−
0 (s) −W−

0 (u) + (t− u)W−
1 (s)

−(t− s)W−
1 (u) + (s− u)U1(t)

+(s− u)
{

− 16
∫ Λ2

m2
+

ds′
3Imf−

1 (s′)
(s′ −m2−)(s′ −m2

+)

+G−
b (2) + tG−

b (3) + t2G−
b (4) +H−

b (2)

+(2ΣπK − t)H−
b (3) + [(2ΣπK − t)2 − b]H−

b (4)

+(b− us)H−(4)

}
+O(p8). (29)

On the right-hand sides of (19) and (29) the dependence
on the cutoff Λ must cancel: we have verified that it does,
up to O(p8) terms. The dependence upon the parameter
b must also cancel. This gives rise to constraints among
the πK and ππ → KK amplitudes and their derivatives
which we have not explored.

3 Chiral representation and sum rules

3.1 Chiral representation at O(p4)

First, let us recall, that at the leading chiral order, O(p2),
one has

F 1/2(s, t) =
1

4f2
π

(4s+ 3t− 4ΣπK),

F 3/2(s, t) =
1

4f2
π

(−2s+ 2ΣπK), (30)

or

F+(s, t) =
1

4f2
π

t, F−(s, t) =
1

4f2
π

(s− u). (31)

The corresponding πK partial waves, are, first for l = 0,

f
1/2
0 (s) =

1
128πf2

π

(
5s− 2ΣπK − 3∆2

Kπ

s

)
,

f
3/2
0 (s) =

1
64πf2

π

(−2s+ 2ΣπK), (32)

then for l = 1,

f
1/2
1 (s) =

1
128πf2

π

(
s− 2ΣπK +

∆2
Kπ

s

)
, f

3/2
1 (s) = 0,

(33)
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while the partial waves for l ≥ 2 vanish at this order. In
the ππ → KK channel, the l = 0 and l = 1 partial waves
are

g00(t) =
√

3t
64πf2

π

, g11(t) =
√

2
48πf2

π

. (34)

At the NLO order, according to the discussion above, the
πK amplitudes must have the following form:

F+(s, t) =
[
W

+
0 (s) + (t− u)W+

1 (s) + (s↔ u)
]

+ U0(t)

+λ+1 t
2 + λ+2 (s− u)2 + β+t+ α+, (35)

and

F−(s, t) =
[
W

−
0 (s) + (t− u)W−

1 (s) − (s↔ u)
]

+(s− u)U1(t) + (s− u)(λ−
1 t+ β

−). (36)

Indeed, the calculation was performed in ChPT at O(p4)
in [6], and it is not difficult to recast their result in the
above form. We display the explicit expressions below,
which will be used in the derivation of the sum rules. The
W functions receive contributions from the πK and ηK
intermediate states,

W
±
l (s) =

1
64f4

π

(
W±

l,πK(s) +W±
l,ηK(s)

)
. (37)

For the W+
0,PQ functions, one obtains from [6]

W+
0,πK =

[
19s2 − 28sΣπK + 12Σ2

πK − 9∆2
Kπ

+
2∆2

KπΣπK

s
+

4∆4
Kπ

s2

]
J̄πK(s)

−4∆4
Kπ

s
J̄ ′

πK(0),

W+
0,ηK =

[
3s2 − 4sΣπK +

4
3
Σ2

πK +∆2
Kπ + 6∆Kπ∆Kη

−2∆Kπ

s
(∆KπΣKη + 2∆KηΣπK)

+
4∆2

Kπ∆
2
Kη

s2

]
J̄Kη(s)

−4∆2
Kπ∆

2
Kη

s
J̄ ′

Kη(0). (38)

In these expressions, J̄PQ(s) is the standard one-loop func-
tion [4] which has the following dispersive representation:

J̄PQ(s) =
s

16π2

∫ ∞

(mP +mQ)2
ds′

√
λPQ(s′)

(s′)2(s′ − s) , (39)

with

λPQ(s′) = (s′ − (mP +mQ)2)(s′ − (mP −mQ)2). (40)

Now the W−
0,PQ functions are

W−
0,πK =W+

0,πK − 16(s−ΣπK)2,

W−
0,ηK =W+

0,ηK . (41)

The last equality holds because the ηK state has isospin
I = 1/2. Also Imf3/2

1 vanishes at O(p4) (and also at
O(p6)) and consequently,

W
+
1 (s) =W

−
1 (s). (42)

The expression for the W+
1,PQ components is the same for

PQ = πK or ηK and is given by

W+
1,PQ =

(
s− 2ΣPQ +

∆2
PQ

s

)
J̄PQ(s) − 4∆2

PQJ̄
′
PQ(0).

(43)
Finally, the U l functions at O(p4) are

16f4
πU0(t) = 2t(2t−m2

π)J̄ππ(t) + 3t2J̄KK(t)

+2m2
π

(
t− 8

9
m2

K

)
J̄ηη(t),

48f4
πU1(t) = 2(t− 4m2

π)J̄ππ(t) + (t− 4m2
K)J̄KK(t).

(44)

The imaginary parts of the W and U functions at O(p4)
can be recovered from the definitions (13) and (23) in
terms of the imaginary parts of f±

l (s), g00(s) and g11(s)
and using unitarity to relate the latter to the l = 0, 1 am-
plitudes πK → πK, ηK and ππ → ππ,KK, ηη computed
at O(p2). For instance, unitarity gives

1
64f4

π

ImW+
0,πK(s) = 16π

√
λπK(s)
s

(45)

×
[
1
3
|f1/2

0 (s)|2 +
2
3
|f3/2

0 (s)|2 +
∆Kπ

λπK(s)
|f1/2

1 (s)|2
]
,

and using the O(p2) expressions (32) and (33) for the par-
tial waves one recovers the same imaginary part as in (38).

The separation in (35) and (36) into a polynomial part
and a part with cut-analytic functions is arbitrary: we
have only required that each piece be scale independent
(a different choice was made in [15]) and finite. The coeffi-
cients of the polynomials are simple linear functions of the
coupling constants Li(µ). Using the following notation:

LP = log
m2

P

µ2 , RPQ =
m2

P

m2
P −m2

Q

log
m2

P

m2
Q

(46)

and the result of [6], one finds for the coefficients entering
the F− amplitude at O(p4):

f2
πβ

− =
1
4

+
2m2

π

f2
π

[
L5 − 1

512π2 (6LK + 5RπK +RηK)
]
,

f4
πλ

−
1 = −L3 +

1
512π2

[
−4

3
log

m2
π

m2
K

+RηK +RπK

]
.

(47)
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The coefficients entering the F+ amplitude, then, have the
following expression in terms of the Li’s:

α+ =
8m2

πm
2
K

f4
π

{
4L1 + L3 − 4L4 − L5 + 4L6 + 2L8

+
1

512π2

[
7
9
Lη − LK −RπK +

1
3
RKη − 2

9

]}
,

β+ = β− +
8(m2

π +m2
K)

f4
π

[
− 2L1 − 1

2
L3 + L4 +

1
512π2

×
(
LK +RπK +

1
3

)]
+

m2
π

128π2f4
π

log
m2

π

m2
η

,

f4
πλ

+
1 = 8L1 + 2L2 +

5
2
L3

+
1

512π2 [−8Lπ − 10LK − 4RπK − 15] ,

f4
πλ

+
2 = 2L2 +

1
2
L3

+
1

512π2

[
−6LK − 5RπK −RηK +

1
3

]
. (48)

This completes the rewriting of the chiral formulas of [6]
in a form which allows easy matching with the dispersive
representations. This matching generates a number of sum
rules. For F−, the dispersive formula has no subtraction
constant, which implies that the two coefficients β− and
λ−
1 can be expressed as sum rules. For F+, one subtrac-

tion constant remains and this implies that the three coef-
ficients β+, λ+1 , λ+2 are expressible as sum rules, while the
fourth one, α+, remains undetermined in this approach.
Using (47) and (48) it is then easy to generate sum rule
expressions for the Li coupling constants, which are given
in terms of β±, λ±

i as simple linear combinations. For in-
stance, L1, L2 are given by

L1 =
f4

π

8
(λ+1 − λ+2 + 2λ−

1 )

− 1
512π2

(
−4

3
Lπ − 1

6
LK +

3
8
RπK +

3
8
RηK − 23

12

)
,

L2 =
f4

π

4
(2λ+2 + λ−

1 )

− 1
512π2

(
−1

3
Lπ − 8

3
LK − 9

4
RπK − 1

4
RηK +

1
6

)
.

(49)

while L3 is immediately given in terms of λ−
1 . The coupling

L4, finally, is obtained from the following combination:

L4 =
f4

π

8

(
β+ − β−

m2
K +m2

π

+ 2(λ+1 − λ+2 )
)

− 1
512π2

(
−2Lπ +

5
4
RπK +

1
4
RηK − 7

2

+
m2

π

2(m2
π +m2

K)
log

m2
π

m2
η

)
. (50)

We observe that while the coupling L5 is present in the ex-
pression for β−, it appears multiplied bym2

π (notm2
K) and

thus makes a very small correction to the leading O(p2)
contribution.

3.2 Sum rules

The dispersive representation of the πK amplitudes (19)
and (29) contains one arbitrary parameter, while the poly-
nomial part of the chiral representation (35) and (36) at
O(p4), contains six coefficients: comparing the two repre-
sentations should yield five sum rules for these coefficients
which will translate, in principle, using expressions (48)
and (47), into sum rules for the five coupling constants
Li(µ), i = 1, 5. The explicit form of the sum rules are
obtained by noting that differences like W+

0 (s) −W+
0 (s),

in which W
+
0 is computed to O(p4) accuracy, are analytic

up to O(p6) contributions,

Im(W+
0 (s) −W+

0 (s)) = O(p6). (51)

Therefore, up to O(p6) terms, we can expand these differ-
ences as polynomials,

W±
l (z) −W±

l (z) = A±
l +B±

l z + C±
l z

2,

Ul(z) − U l(z) = ul + vlz + wlz
2, (52)

for l = 0, 1. We also introduce

Â±
1 = 16

∫ Λ2

m2
+

3Imf±
1 (s′)ds′

(s′ −m2
+)(s′ −m2−)

. (53)

The coefficients A±
l , B

±
l etc. are given as inverse moments

of the imaginary parts of the πK and ππ → KK S- and P-
waves, integrated between the threshold and Λ2, with the
chiral part being subtracted. Together with the integrals
(18) and (28) over the high-energy region, [Λ2,∞], they
form the building blocks of the sum rules.

Equating the chiral and the dispersive expressions, tak-
ing into account (52), we finally obtain the following sum
rule formulas for the polynomial coefficients in the O(p4)
chiral representation (35) and (36):

β− = −Â−
1 +A−

1 +B−
0 + u1 + 2ΣπKC

−
0 +G−

b (2)

+H−
b (2) + 2ΣπKH

−
b (3),

β+ = Â+
1 + 3A+

1 −B+
0 + v0 + 2ΣπK(2B+

1 − C+
0 )

+G+
b (2) −H+

b (2) + 2ΣπK(H+(3) − 2H+
b (3)),

λ+1 = −3
2
B+

1 +
1
2
C+

0 + w0 +G+
b (3)

−1
2
H+(3) +H+

b (3),

λ+2 =
1
2
B+

1 +
1
2
C+

0 +
1
2
H+(3),

λ−
1 = B−

1 − C−
0 + v1 +G−

b (3) −H−
b (3). (54)

The derivation and the structure of these sum rules are
very similar to those which were proposed for ππ scat-
tering in [22]. We now discuss the practical evaluation of
these formulas.
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4 Evaluation of the sum rules

4.1 πK amplitudes

We will make use of the two most recent high-statistics
Kp production experiments, both performed at SLAC,
which have determined πK amplitudes. Estabrooks et al.
[23] have considered several charge combinations enabling
them to determine separately the I = 1/2 and the I = 3/2
combinations. For the isospin I = 3/2 it was observed that
the P and D waves remain very small below s1/2 = 2 GeV:
in our calculations we will only include the S-wave. A few
years later the K−π+ → K−π+ amplitude was remea-
sured in a slightly larger energy range by Aston et al. [24].
For the I = 1/2 S- and P-waves, we have performed fits of
the data of Aston et al. with parameterizations in terms
of Breit–Wigner plus background similar to those used in
this reference using the I = 3/2 S-wave from [23]. In these
fits, we have imposed that the scattering lengths be equal
to their values in ChPT [6]. Relaxing this constraint, how-
ever, makes very little change in the results. For the partial
waves l = 2–5, we have used exactly the same parameter-
izations as provided in [24]. Above s1/2 = 1.5 GeV, ambi-
guities arise in the determination of the S- and P-waves.
Estabrooks et al. find four different solutions and Aston
et al. two. It has been pointed out in [13] that one of these
violate the unitarity bound; therefore, we have used the
remaining one. In our sum rules, we note that the con-
tribution from the S- and P-waves in this energy region
becomes negligibly small anyway. Above the energy range
covered by these experiments we use Regge parameteriza-
tions which we will discuss in more detail below.

4.2 ππ → KK amplitudes

Let us first discuss the S-wave amplitude,

g00(t) ≡ |g00(t)| exp(iφS(t)), (55)

which is a crucial ingredient in the sum rules and is needed
for t ≥ 4m2

π, while it is measured only in the range t ≥
4m2

K . Analyticity, as is well known [16,17,25,26], is the
key to performing this extrapolation. To start with, the
phase of the amplitude, φS(t), may be considered as known
in the whole energy region of interest. Firstly, in the re-
gion where ππ scattering is elastic, φS is identical to the ππ
phase shift (modulo π) from Watson’s theorem. It is now
well established that, to a very good approximation, the
domain where ππ scattering is effectively elastic extends
up to the KK threshold (see e.g. [27]). Above this point,
φS(t) has been measured in experiments; we will use the
two most recent ones: Cohen et al. [28] (who considered
K+K− production) and Etkin et al. [29,30] (who consid-
ered K0

SK
0
S). These data are shown in Fig. 1 together with

the curves which will be used in the calculations. One ob-
serves that the two data sets are compatible except very
close to the KK threshold. (It must be recalled here that
experiments actually measure S–D interference and thus
determine only the difference φS − φD. In treating the
data of Etkin et al. we have used the D-wave model of
[31] rather than that used in the original paper [29].) In
the energy region t1/2 > 2mK , we fit the combined set
of data with piecewise polynomials. In performing the fit,
we have excluded the small energy region where the two
data sets are incompatible and we have instead fixed the
value of the phase at threshold φS(4m2

K), which we have
allowed to vary between 150◦ and 220◦. This may seem
like a wide range and one could think of making use of
the equality between φS and the ππ phase shift at the
threshold to improve on that. However, the available ππ
data points closest to the KK threshold have large error
bars. In order to get exactly at the threshold, one needs
to perform a fit and the result is uncertain because the
ππ phase shift varies extremely rapidly in this region [27].
One ends up with the same range of values as we have
chosen. In the energy range t1/2 ≤ 0.8 GeV, the curve in
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Fig. 1 is the result from the recent Roy equations analysis
of [32], with a00 = 0.22, a20 = −0.0444. Because of the new
Kl4 data [33] there is now a rather small uncertainty on
the curve in this energy region [34]. In the energy region
between 0.8 GeV and the KK threshold we use the simple
interpolation formula,

φS(t) = α+
β√
t− E1

, (56)

in which the three parameters are determined from im-
posing continuity at both ends and continuity of the first
derivative at the lower end.

Once the phase is known, determining the modulus
in the region [4m2

π, 4m
2
K ] is a standard Muskhelishvili–

Omnès [35,36] problem because g00 satisfies the following
integral equation:

g00(t) =
t

π

∫ ∞

4m2
π

Img00(t
′)dt′

t′(t′ − t) + g00(0) +∆(t), (57)

where∆(t) has only a left-hand cut.∆(t) can be expressed
explicitly in terms of πK partial wave amplitudes and
ππ → KK partial waves with l ≥ 2:

∆(t) =
∑

l

∫ ∞

m2
+

ds′Kl0(s′, t)Imf+
l (s′)

+
∑

l≥2,even

∫ ∞

4m2
π

dt′Gl0(t′, t)(qπqK)lImg0l (t′). (58)

For t � 1 GeV2, ∆(t) is dominated by the πK S- and P-
waves and (57) is one component of a system of Roy-type
equations [37,38]. This system was expressed in [15] in
terms of the two scattering lengths a1/2

0 , a3/2
0 . As we do

not attempt to solve the full system here, we find it more
convenient to use g00(0) as subtraction constant. We have
included D-waves as well into the calculation in order to

extend the validity of the evaluation of ∆(t) somewhat
above 1 GeV. The kernels needed in (58) are

K00(s′, t) = I0(s′, t) − I0(s′, 0),

with

I0(s′, t) =
4√

(t− 4m2
π)(t− 4m2

K)

×Arcth

√
(t− 4m2

π)(t− 4m2
K)

2s′ − 2ΣπK + t
,

K10(s′, t) = 3

[
I0(s′, t)

(
1 +

2s′t
λπK(s′)

)
− 2t
λπK(s′)

−I0(s′, 0)

]
,

K20(s′, t) = 5
[
I0(s′, t)

(
1 +

6s′t
λπK(s′)

+
6(s′t)2

λ2πK(s′)

)

+
6t

λ2πK(s′)

(
s′(−2s′ + 2ΣπK − t)

+
1
6
(t− 4m2

π)(t− 4m2
K)
)

− I0(s′, 0)
]
,

G20(t′, t) =
16 × 5√

3
t′(t′ + t− 4ΣπK)

t′(t′ − 4m2
π)(t′ − 4m2

K)
. (59)

The various contributions and the result for ∆(t) are dis-
played in Fig. 2.

In order to solve (57) we first construct the Omnès
function over the range [4m2

π, t0], with t0 = 4m2
K ,

Ω(t) = exp

[
t

π

∫ t0

4m2
π

φS(t′)dt′

t′(t′ − t)

]
(60)

≡ ΩR(t) exp[iφS(t)θ(t− 4m2
π)θ(t0 − t)],
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Fig. 3. Solutions of (57) with ∆(t) in-
cluded and ∆(t) ignored

whereΩR(t) is real. When t approaches theKK threshold,
ΩR(t) has the following behavior:

lim
t→4m2

K

ΩR(t) ∼ |t− 4m2
K |φS(4m2

K)/π. (61)

Therefore, two cases must be considered, depending
whether φS(4m2

K) is smaller or larger than π. Let us first
consider the case

φS(4m2
K) ≤ π. (62)

The solution to (57) is obtained by introducing the func-
tion

f(t) =
1
Ω(t)

(g00(t) −∆(t)), (63)

and noting that it is analytic except for a right-hand cut.
It can thus be expressed as a dispersion relation which is
defined up to a polynomial which depends on the behavior
at infinity of f(t) [35]. We will assume that f(t) is bounded
at infinity by a polynomial of degree one and thus, g00 can
be expressed in terms of two subtraction constants,

g00(t) = ∆(t) +Ω(t)

[
α0 + β0t

+
t2

π

∫ 4m2
K

4m2
π

dt′
∆(t′) sinφS(t′)
ΩR(t′)(t′)2(t′ − t)

+
t2

π

∫ ∞

4m2
K

dt′
|g00(t′)| sinφS(t′)
ΩR(t′)(t′)2(t′ − t)

]
. (64)

One observes that the integrals converge at t′ = 4m2
K if

the condition (62) is satisfied. A small calculation shows
that at t = 4m2

K the condition (g00)output = (g00)input is
automatically satisfied in (64). Concerning the parameters
α0, β0 it is not difficult to see that for the purpose of using

g00 with O(p4) precision it is consistent to use the values
of α0, β0 with O(p2) precision, i.e.

α0 = 0, β0 =
√

3
64πf2

π

−∆′(0), (65)

and g00 gets fully determined (the value of the deriva-
tive ∆′(0) is determined numerically to be ∆′(0) � 0.256
GeV−2). The influence of∆(t) is illustrated in Fig. 3 which
compares the full solution from (64) to the solution with∆
set equal to zero. One sees that in the energy region where
we really need to use (64), i.e. below the KK threshold,
∆(t) actually has a rather small effect. The solution is es-
sentially controlled from the chiral constraints at t = 0
and the experimental input at t ≥ 4m2

K . Above the KK
threshold, the agreement of the experimental data with
the output from (64) seems much improved if ∆(t) is in-
cluded. In the case where

φS(4m2
K) > π, (66)

we need only modify the definition of f(t) (see (63)) to

f(t) =
t− 4m2

K

Ω(t)
(g00(t) −∆(t)), (67)

and make the corresponding change in the preceding for-
mulas. Because of the extra factor of t one needs to intro-
duce one more subtraction, and an additional parameter,
γ0, appears in the solution: we simply fix γ0 so that input–
output agreement is retained in the physical region when
the condition (66) holds.

There is a subtlety in the above calculation which must
be discussed. Clearly, because of the singular behavior of
the term 1/ΩR(t′) in the integrand at the KK threshold
the result will be rather sensitive to the value of |g00(t′)| in
this region and, in particular, to its value exactly at the
threshold, while experimental information starts slightly
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above the KK threshold. A simple solution is to use t0
slightly larger than 4m2

K in (60). We have done so and
found good stability of the result. We have also used the
following simple method which, at the same time, provides
an alternative extrapolation method in the whole region
of interest. We first construct an Omnès function over a
region [4m2

π, t1] with t1 >> 4m2
K ,

Ω1(t) = exp

[
t

π

∫ t1

4m2
π

φS(t′)dt′

t′(t′ − t)

]
, (68)

and then consider the function

V 0
0 (t) =

1
Ω1(t)

g00(t). (69)

The function V 0
0 is analytic with a left-hand cut, and a

right-hand cut which only starts at t = t1. Therefore, V 0
0

is expected to be a smooth function in the region [0, t1]
and we can use approximations by polynomials there. In
practice, we used fourth order polynomials,

V 0
0 (t) = α0 + β̃0t+ γ̃0t2 + δ0t3, 0 ≤ t ≤ tfit < t1. (70)

The first two parameters are determined from ChPT as
above and we fit the remaining two to values of V 0

0 de-
termined from the data above the KK threshold. The
energy range in which the fit is performed t ≤ tfit can-
not, of course, be made too large, otherwise higher order
polynomials would be needed. Figure 4 shows two differ-
ent fits and illustrates that this procedure, while simple, is
also quite stable. This procedure allows one to determine
the value of |g00(4m2

K)| (which is thus correlated with the
value of φS(4m2

K)) and can be used for correctly comput-
ing the integrals above (64). We can also use the poly-
nomial approximation to V 0

0 to extrapolate g00 below the
KK threshold (note that this method requires no knowl-
edge of the left-hand cut and no assumption concerning

asymptotic behavior). We found that the two methods of
extrapolation are in very good agreement.

The solution for g00 has a rather strong dependence
on the value of the phase φS at the KK threshold as is
shown in Fig. 5: the larger φS(4m2

K), the higher is the
corresponding f0(980) resonance peak. Another source of
uncertainty in this calculation is the fact that the two
available data sets for |g00 |, while having small error bars,
are not exactly compatible. The data of [28] lie system-
atically below the data from [29,30]. The corresponding
influence in the f0(980) peak is shown in Fig. 6.

Let us now turn to the l = 1 amplitude g11(t). We will
again here rely on the experimental data from [28] above
the KK threshold and chiral symmetry at t = 0. Let us
first consider the phase of g11 which we denote by φP(t).
In the range t1/2 ≤ 0.82 GeV, φP(t) is equal to the l = 1
ππ phase shift and we use the parameterization of [32]
which is constrained from the Roy equations. In the range
t1/2 ≥ 2mK the measured phase has been shown in [28]
to be well approximated by that of a Breit–Wigner tail of
the following form:

g11 =
mρ

√
Ĝπ(t)ĜK(t)/2

t−m2
ρ − imρ(Gπ(t) +GK(t))

, (71)

with

Ĝπ(t) =
mρΓρ

q30

1 +R2q20
1 +R2q2π

,

ĜK(t) =
mρΓρ

2q30

1 +R2q20
1 +R2q2K

, (72)

and

Gπ = (q3π/
√
t)Ĝπ, GK = (q3K/

√
t)ĜK ,

q20 = m2
ρ/4 −m2

π, R = 3.5 GeV−1. (73)
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The phase from this formula departs from the measured
one above 1.6 GeV, but we will ignore this discrepancy as
in this region the l = 1 amplitude plays a little role. Fi-
nally, in the intermediate region 0.82 GeV ≤ t1/2 ≤ 2mK

we use the interpolation formula

tanφP(t) = (a+ bt)/(t−m2
ρ),

0.82 GeV ≤ √
t ≤ 2mK . (74)

From this phase we can construct an Omnès function

ΩP(t) = exp

[
t

π

∫ ∞

4m2
π

φP(t′)dt′

t′(t′ − t)

]
. (75)

The magnitude of g11 remains to be discussed. As in the
case of g00 we expect that it can be expressed with a good

approximation as a low order polynomial times the Omnès
function in the whole energy range of interest. In fact, ear-
lier studies based on extrapolations away from the left-
hand cut have shown that a constant polynomial is suffi-
cient below 1 GeV [39,40]. With this in mind, we made a
fit to the data between 1 and 1.5 GeV with a polynomial
containing a constant term plus a term quadratic in t,

g11(t) � α1(1 + β1t2)ΩP(t),
√
t ≤ 1.5 GeV, (76)

fixing α1 = 21/2/48πf2
π from O(p2) chiral symmetry. A

good fit is obtained in this way with β1 = −0.187 GeV−4

such that the quadratic term is indeed small below 1 GeV
(in discussing the errors we will introduce a linear term as
well). The result for |g11 | is shown in Fig. 7.
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tial wave g1

1 (in units of GeV−2) from
the construction described in the text,
compared to the experimental data [28]

We have also included higher partial waves with l =
2, 3, 4. For l = 2 we include the resonances f2(1270),
f2(1425), f2(1810) with Breit–Wigner functions analogous
to (71) and parameters fitted to the data of [30]. For l = 3
we include ρ3(1690) and for l = 4 the f4(2050) resonances.
In both cases we take the ππ and KK partial widths from
the PDG [41].

4.3 Asymptotic region

Beyond the energy region where the amplitudes are effec-
tively measured in experiments we can hardly make bet-
ter than qualitative estimates. For this purpose we will
assume that the resonance region matches a region where
Regge behavior prevails. More specifically, we will consider
the dual-resonance model for the πK amplitude (see e.g.
[27]):

F±(s, t, u) = −λ [VK∗ρ(s, t) ± VK∗ρ(u, t)] ,

VK∗ρ(s, t) =
Γ (1 − αK∗(s))Γ (1 − αρ(t))
Γ (1 − αK∗(s) − αρ(t))

. (77)

For the Regge trajectories we take

αρ(t) = 0.475 + α1t,

αK∗(s) = 0.352 + α1s,

α1 = 0.882 GeV−2, (78)

and for the parameter λ we take λ = 1.82 which real-
izes an approximate matching to the region known from
experiment around s1/2 = 2 GeV. In taking asymptotic
limits in formula (77) an iε prescription is understood; for
instance, s → ∞ means |s| → ∞ and s = |s| exp(iε). One
then finds the well-known Regge behavior,

ImF±(s, t, u)s→∞,t fixed ∼ πλ

Γ (αρ(t))
(α1s)αρ(t). (79)

Table 1. Results for the high-energy integrals (see (18) (28)) in
appropriate powers of GeV, showing two different integration
regions

H+
0 (2) H+

0 (3) H+
b (2) H+

b (3) G+
b (2) G+

b (3)

[Λ2, 4GeV2] 8.05 4.66 4.56 3.11 1.26 0.92
[4GeV2, ∞] 8.75 0.72 0 0 1.17 0.13

H−
0 (2) H−

0 (3) H−
b (2) H−

b (3) G−
b (2) G−

b (3)

[Λ2, 4GeV2] 5.81 2.32 1.74 1.76 1.17
[4GeV2, ∞] 2.18 0 0 1.25 0.14

In the case of F+(s, t) one needs to include additionally
the pomeron,

ImF+(s, 0)pomeron =
1
π
σs, (80)

in which we take σ = 2.5 mb (see the discussion in [32]).
We also need ImF±(s, t, u) in the regime where t → ∞
and s→ 0 in the integrals G±

b (n). The model (77) gives a
Regge behavior associated with the K∗ trajectory,

ImF±(s, t, u)t→∞,s fixed ∼ πλ

Γ (αK∗(s))
(α1t)αK∗ (s). (81)

Finally, we need ImF±(s, t, u) in a regime where s → ∞
and u → 0 in the integrals H±

b (n). In this case, the term
VK∗ρ(u, t) in (77) makes no contribution to the imagi-
nary part (this, of course, reflects the exact degeneracy of
the K∗ and K∗

2 trajectories in this model) and the term
VK∗ρ(s, t) becomes exponentially suppressed (this term is
the amplitude for the reaction π+K− → π+K− and the
corresponding u-channel is π+K+ → π+K+, which is ex-
otic). The influence of these asymptotic contributions can
be appreciated from Table 1 below.
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Table 2. Results from the sum rules for the chiral couplings L1, L2, L3 (mul-
tiplied by 103) at the scale µ = 0.770GeV (last line), compared to the results
from ππ sum rules and from the Kl4 form factors

103× L1 L2 L3 L3 + 2L1

ππsrO(p4) − 1.02 ± 0.05 − −2.78 ± 0.32
Kl4 O(p4) 0.46 ± 0.23 1.49 ± 0.23 −3.18 ± 0.85 −2.26 ± 0.97
πKsrO(p4) 0.84 ± 0.15 1.36 ± 0.13 −3.65 ± 0.45 −1.97 ± 0.34

4.4 Results

Let us first perform some simple checks. Equating the two
dispersive representations of F−(s, t) we obtained (27);
using this relation at t = 0 gives one relation among the
building blocks of the sum rules

2Â1 +H−
0 (2) = u1 +G−

b (2) +H−
b (2). (82)

We expect some uncertainty because of the relatively slow
convergence in the integrals H−

0 (2), G−
b (2), but there is

some amount of cancelation of these effects. Using the
phenomenological input as described above, we obtain

2Â1 +H−
0 (2) � 33.17,

u1 +G−
b (2) +H−

b (2) � 32.07 [GeV−2]. (83)

Clearly, there is a very reasonable degree of agreement.
This provides a check on the construction of the ππ →
KK P-wave. We have also redone with our input the cal-
culation of Karabarbounis and Shaw [42] which gives the
difference in the scattering lengths a1/2

0 − a3/2
0 :

mπ(a1/2
0 − a3/2

0 ) =
3mπ

8π(mπ +mK)
F−(m2

+, 0) � 0.22,

(84)
to be compared with the result [42] mπ(a1/2

0 − a
3/2
0 ) =

0.26 ± 0.05. We have a comparable uncertainty due to a
large extent to the asymptotic contributions. A related
quantity is the polynomial parameter β− (see (36)) for
which a rather precise value is predicted by the chiral ex-
pansion,

f2
πβ

− = 0.25 + 0.01 +O(p6), (85)

where the successive contributions are shown. Using the
sum rule expression (54) for β− we obtain

f2
πβ

− � 0.24, (86)

which is within 10% of the result from ChPT. The size of
the uncertainty in this calculation is approximately 15%,
so the agreement is satisfactory, but it is not possible to
separate the purely O(p4) part (in the other term, we have
no sum rule for L5). We note also that the O(p4) contri-
bution being suppressed, the O(p6) one could be of com-
parable size.

Let us now discuss the results for the chiral couplings
L1, L2, L3. We recall that these are obtained by first gen-
erating sum rules for the polynomial coefficients λ+1 , λ+2 ,
λ−
1 ; here the contributions from the asymptotic regions

are suppressed so we can expect rather good accuracy.
Our results are collected in the last line of Table 2; they
complete and update those already given1 in [15]. The way
in which the errors quoted in the table are evaluated will
be explained in more detail below., They do not include
any effect from O(p6) corrections. The table also shows for
comparison the results obtained from ππ sum rules (taken
from [34] in which O(p4) matching is used) and the results
based on the Kl4 form factors also computed at chiral or-
der p4. The numbers quoted in the table are taken from
the fit of Amoros et al2. [43] based on the data3 of Rosselet
et al. [44]. We note that the value of L1 obtained previ-
ously in [8], 103L1 = 0.65 ± 0.27, while compatible, has
a somewhat larger central value. Our results for L2 and
L3 agree within approximately 30% with the results from
Kl4 or ππ. Concerning L2, the difference between the Kl4
and the ππ result is substantially larger than that; our re-
sult happens to lie in between these two. A discrepancy at
the 30% level can be expected as a consequence of unac-
counted for O(p6) effects. In the case of L1, however, there
is a larger discrepancy, by about a factor of two, between
our value and that from [43]. The combination L2 − 2L1
is suppressed in the large Nc limit [4]. We indeed find a
suppression of the value of L2 − 2L1 (compared, say, with
L1(mρ) or L2(mρ)) even though this combination is dom-
inated by scalar resonances. A calculation of the Kl4 form
factors in ChPT to order p6 was recently performed [43,
45] and the couplings L1, L2, L3 were then redetermined,
using a model to estimate the O(p6) couplings Ci(µ). The
following numbers are obtained [43]

103L1 = 0.53 ± 0.25,
103L2 = 0.71 ± 0.27,
103L3 = −2.72 ± 1.12 [Kl4, O(p6)]. (87)

Clearly, variations larger than naively expected can occur
as compared to the O(p4) determination. It remains to be
seen, and this would be an interesting check of the conver-
gence of the SU(3) chiral expansion, how the differences
in the results from the various methods of determining

1 In [15] a factor f2
πf2

K was used in (47) and (48) instead
of f4

π . Here, we prefer not to include incomplete parts of the
O(p6) contributions

2 We thank P. Talavera for communicating the values of the
errors corresponding to this fit

3 An indicative fit using preliminary data from the more re-
cent E865 experiment [33] is performed in [43], which gives
essentially the same central values for L1, L2, L3 and error
bars reduced by approximately a factor of two
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Table 3. List of different sources of errors (see text for details)
and their impact on the determination of the Li’s

105× ∆L1 ∆L2 ∆L3 ∆L4

δ
3/2
0 0.2 0.5 0.7 0.5

δ
1/2
0 0.7 0. 3.0 3.6

δ
1/2
1 0.1 1.5 2.5 0.6

a
1/2
0 0.3 0.4 1.4 0.6

g1
1 9. 9. 36. 10.

g0
0 4.5 0. 0. 15.
Regge 0.3 1.6 1.0 0.1

L1, L2, L3 are reduced, once the O(p6) contributions are
included.

In order to estimate the errors, firstly, we have var-
ied the S- and P-wave πK phase shifts inside bands of
half-width ∆δ1/2

0 = 2◦, ∆δ3/2
0 = 1◦, ∆δ1/2

1 = 1◦, which
correspond to the average experimental errors in the re-
gion of elastic scattering (which makes the most important
contribution). For the ππ → KK P-wave, g11 , we have
varied the coefficients of the normalizing polynomial (see
(76)), allowing for a term linear in t, and requiring that
χ2 does not exceed twice its minimal value. The coefficient
α1 is kept fixed since its variation can be considered as an
O(p6) effect, which we do not try to estimate. This proce-
dure generates a variation of the height of the ρ resonance
peak in the 10% range, which may seem rather small, but
affects the results quite substantially, as can be seen from
Table 3. For the S-wave, g00 , we have varied the phase at
threshold φS(4m2

K) (which, as we have seen, is the param-
eter on which the size of the f0(980) peak mostly depends)
in a range between 150 and 200 degrees. Above threshold
we have made |g00 | to vary in the whole range allowed by
the two incompatible experiments. We have also allowed a
10% variation of the scattering lengths a1/2

0 , a3/2
0 (keeping,

however, the difference fixed) and, finally, in the Regge re-
gion we have assumed a 100% uncertainty. We show the
individual impact of these variations on the sum rule re-
sults in Table 3.

We now come to the discussion of L4. From relation
(50) an important remark can be made concerning the
convergence: while β+ and β−, separately, contain inte-
grals which are slowly convergent at infinity, L4 involves
the difference, which has much better convergence prop-
erties. Indeed, consider the high-energy contribution

[β+ − β−]HE = G+
b (2) −G−

b (2) − (H+
b (2) +H−

b (2))

+ 2ΣπK(H+(3) − 2H+
b (3) −H−

b (3)). (88)

On rather general grounds, the leading Regge contribution
in G+

b (2) and G−
b (2) is the same and will cancel in the

difference. Also in the second potentially dangerous term
H+

b (2) + H−
b (2) the relevant cross channel is pure I =

3/2 and has no leading Regge contributions. The other
terms in (88) are, as we have seen, rather insensitive to the
asymptotic region. Therefore, we expect the uncertainty
in L4 coming from the asymptotic region to be small, of

Table 4. Sum rule results for L4(µ = 0.770)

φS(4m2
K) 150◦ 175◦ 185◦ 200◦ 220◦

103L4 0.08 0.18 0.22 0.27 0.34 Etkin
0.03 0.10 0.13 0.16 0.21 Cohen

the same size as in L1, L2, L3. Let us now consider the
energy region below 1 GeV. Using (50) and (54) we can
write,

[L4]LE = 2A+
1 + 2Â+

1 −B+
0 −B−

0 + v0 − u1
+2ΣπK(−C+

0 − C−
0 + w0) (89)

(where we have used A−
1 = A+

1 , Â−
1 = Â+

1 which is true up
to O(p8)). This expression contains P-wave contributions,
which may seem surprising in view of the well-known res-
onance saturated expression [9]

Lres
4 = − cdcm

3M2
S8

+
c̃dc̃m
M2

S1

, (90)

which involves only scalar resonances. It is in fact possi-
ble to write an alternative expression for (89): using the
crossing symmetry relation (82) the P-wave combination
2Â+

1 − u1 gets replaced by contributions from above the
resonance region and the P-wave term A+

1 has, in fact, no
contribution from the resonances. This alternative expres-
sion has only S-wave resonance contributions but is not as
rapidly convergent.

Numerical results for L4 are shown in Table 4 for sev-
eral input values of the threshold phase φS(4m2

K). We have
also mentioned that the two experimental measurements
of |g00 | of [28] and [30] have a somewhat inconsistent nor-
malization. We have performed the calculation for each
data set separately. A clear feature from these calcula-
tions is that L4(mρ) is suppressed, and has a magnitude
similar to 2L1 −L2. It is not very easy to decide on which
central value to choose. We will make the choice of believ-
ing the data of Cohen et al. [28] for the value of φS(4m2

K),
which is then close to 200◦, as they argue that the pres-
ence of a P-wave in their experiment (which is absent in
the other experiment) helps in correctly determining the
S-wave phase at threshold. Concerning the normalization
of |g00 | above the threshold we may average over both ex-
periments. Taking into account the main sources of uncer-
tainty (see Table 3) we would then obtain

L4(µ = 0.770) = (0.22 ± 0.30) · 10−3. (91)

This result is a refinement of the previous estimate of
Gasser and Leutwyler [4], L4(µ = 0.770) = (−0.3 ± 0.5) ·
10−3, based on the assumption that OZI suppression
holds, but without precisely knowing the value of the scale
at which it does. Other results can be found in the lit-
erature [46,47] which, however, are based on some as-
sumptions allowing one to determine scalar form factors.
The fact that they agree with (91) indicates that these
assumptions are reasonable. Finally, Amoros et al. [43]
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have attempted to determine L4 from Kl4 data, using
their O(p6) calculations, and they obtain L4(µ = 0.770) =
(−0.2 ± 0.9) · 10−3 which, as expected, is not very tightly
constrained.

5 Conclusions

In this paper we have performed an evaluation of the set
of sum rules proposed in [15]. While some results were al-
ready presented in [15], the calculations performed here
are more complete: they take into account the contribu-
tions from partial waves beyond the S- and P-waves as well
as asymptotic contributions. In order to fully exploit these
sum rules, one needs to perform an extrapolation of the
l = 0 and l = 1 partial waves of the ππ → KK amplitude.
This can be performed using standard Muskhelishvili–
Omnès techniques and was considered a long time ago [16].
A great improvement over these calculations is the avail-
ability nowadays of direct and precise experimental results
concerning the ππ → KK amplitude, so there is no need
to make use of inelasticity in ππ scattering, which is not
very precisely determined and requires the assumption of
exact two-channel unitarity. We have checked the stabil-
ity of the calculation by comparing different approaches to
the solution. The main source of uncertainty comes from
the value of the phase at the KK threshold because the
height of the f0(980) peak is strongly correlated with the
value of this phase. The two available experimental data
sets do not agree on this value and we have assumed a
plausible range of variation. We have obtained a redeter-
mination of the three O(p4) chiral couplings L1, L2, L3.
Comparison with former determinations allows a test of
the SU(3) chiral expansion to be made. For instance, it is
encouraging that the value of L2 that we obtain is inter-
mediate between the value from Kl4 and the value from
ππ sum rules. Besides, we have obtained for the first time
an evaluation of L4 at the same level of precision and reli-
ability as L1, L2, L3. This was not possible from the Kl4
form factors because of an accidental suppression of the
coefficient of L4 in this case.

In constructing the l = 0 and l = 1 partial waves of
the ππ → KK amplitude, we have solved a subset of the
system of Roy–Steiner equations. A further improvement,
which we have not performed here, would be to use the full
set of equations in order to constrain the low-energy part
of the πK → πK amplitudes. We note however, that the
range of energies where this is needed, that is, between the
threshold and the energy where the data start, is smaller
for πK than it is for ππ. Solving these equations would
help in deciding whether a strange counterpart of the σ
meson, the κ meson, actually exists (e.g. [11] and refer-
ences therein) or not [48]. An obvious further improve-
ment would be to use the sum rules in association with
a chiral O(p6) calculation of the πK amplitudes. These,
taken together with the ππ sum rules (associated also with
an O(p6) SU(3) calculation of the ππ amplitude) and the
available calculation of the Kl4 form factors to this order
[45] would no doubt greatly improve our understanding of
the chiral expansion in ms.
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